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Abstract

We investigate how the China shock affects workers’ health through optimal health

investment decisions. We empirically estimate the elasticity of import penetration

per worker on future good health probability. In our quantitative model, workers

make decisions on their health investments based on sickness shocks, income, and

insurance status. They have the option to either partially treat sickness or invest in

their health beyond just treating the sickness. In our quantitative evaluation of the

China shock, we find that there is little (substantial) change in the probability of future

good health of employed workers whose health is initially bad (good), in line with our

empirical estimates. In addition, uninsured workers who encounter a severe sickness

shock experience a significant decline in their health. Overall, the health investment

mechanism accounts for over two-fifths of the estimated empirical elasticity, implying

that the China shock pushes nearly half a million individuals in U.S. manufacturing

into bad health through this mechanism. In our counterfactuals, we find that universal

health insurance would have remedied over 80% of the adverse health effects from the

China shock, with large heterogeneity across sickness shocks and across commuting

zones with varying degrees of exposure to import penetration.
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1 Introduction

A large empirical literature finds that in response to the “China shock”—an increase in

import penetration from China in the U.S. manufacturing sector—the local labor market

adjustment was slow and that workers experienced long-term adverse effects in earnings

and employment (e.g. Autor et al., 2013; Autor et al., 2014). Additional research has

complemented these studies using dynamic models to quantify the mechanisms underlying

the earnings and employment consequences of the China shock (e.g., Lyon and Waugh,

2018; Caliendo et al., 2019). Considering the significant economic effects on workers, recent

empirical studies have also indicated that the China shock had adverse effects on workers’

health (e.g., Adda and Fawaz, 2020; Pierce and Schott, 2020). However, the mechanisms

behind these health effects remain unexplored. This is an important open question, because

the China shock may have persistent effects on health, which in turn, would have significant

implications for individual workers’ well-being and potential government policies.

In order to better understand these mechanisms, it is important to recognize that many

in the U.S. do not have health insurance coverage that may limit their healthcare utiliza-

tion when they experience a sickness. According to the National Health Interview Survey

(NHIS), 18.6% of working-age adults reports not receiving medical care in 2011-2012 due

to financial constraints. On the other hand, there are many ways to invest in one’s health

beyond receiving medical care, such as consuming healthy foods and investing in exercise

equipment. These features of “under -investment” or “over -investment” (relative to sick-

ness) in health, however, have not been incorporated into the quantitative models of health

transition dynamics in the literature (e.g. Cole et al., 2019; Fonseca et al., 2021).

In this study, we first estimate the effect of import penetration on the likelihood of good

health at the regional and worker levels. Our empirical results show that exposure to the

China shock decreases the probability of good health, complementing the previous studies

discussed above. Given these empirical findings, we develop a quantitative dynamic model

in which workers’ probability of future good health is determined by sickness shocks and

endogenous health investment. Importantly, when workers experience sickness shocks, they

may optimally choose to under-invest (e.g., only partially treat their sickness) or over-invest

(e.g., receive additional therapies beyond the treatment of sickness) in health. We calibrate

the model to match the key empirical patterns including workers’ health dynamics, and use
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the model as a laboratory to quantify the health effects of the China shock through the

health investment mechanism, and evaluate the efficacy of potential policy responses, such

as universal health insurance.

Our first goal is to estimate the effects of the China shock on the probability of good

health, the dynamics of which is the focus of our model. Following Autor et al. (2013), we

measure the magnitude of the China shock as import penetration per worker (IPW) in their

commuting zones. We further combine the IPW data with the individual-level health and

geographical data in the Panel Study of Income Dynamics (PSID). At the regional level, we

find that the elasticity of good health share with respect to import penetration is around

−0.060. Further utilizing the detailed individual-level characteristics and accounting for

individual fixed effects, our analysis estimates the elasticity of future good health probability

with respect to IPW at −0.054 for full-time manufacturing workers. The effects of the China

shock are heterogeneous, with more pronounced effects on workers with lower income and

those with good initial health.

Given these novel empirical findings, we incorporate both worker-level and sector-level

analyses into our model. At the sector level, the manufacturing sector produces outputs from

both domestic and foreign intermediate inputs, and the production of domestic inputs is

exposed to import penetration, capturing the key features of the China shock. International

trade affects both the sectoral wages and employment endogenously, as the labor market for

the manufacturing sector clears. At the worker level, we explicitly model the endogenous

evolution of workers’ good-health probability as in Cole et al. (2019) and Fonseca et al.

(2021), while also introducing distinctive features from theirs. In particular, workers face

health transition risks in the form of sickness shocks. In response, they can choose health

investment to improve the probability of future good health. Unlike in previous studies,

workers may optimally choose to under-invest in health, where the medical expenditure

is insufficient to fully treat the sickness. They may also choose to over-invest, above and

beyond the full treatment (through, e.g., massages or therapies). In other words, the health

transition depends on both the sickness shock the worker experiences and his choice of health

investment, which could be different from each other.

The next step in our analysis is to calibrate the model. Using the Medical Expenditure

Panel Survey (MEPS) data, we document empirical facts that relate health transitions, med-

ical expenditures, and insurance statuses. Two key observations are first, that those with
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bad initial health and high current medical expenditures are less likely to transition into good

health in the future; and second, that uninsured individuals have lower probabilities of tran-

sitioning into good health, conditional on current period’s medical expenditures (and other

health and demographic conditions). Motivated by these observations, we interpret high

medical expenditures as severe sickness shocks, and use the medical expenditure distribu-

tion from MEPS to measure the health-dependent sickness shock distribution in our model.

With these parameter values in hand, we specify a flexible Weibull function for the transition

probability to good health (health production function) that differ by initial health status.

The health production function and utility parameters are calibrated to match worker-level

variables that include health transition probabilities, shares without medical utilizations,

and average medical expenditures, by worker demographics. We then utilize labor market

clearing conditions in the manufacturing sector and trade data to calibrate the sector-level

parameters.

The calibrated health production function features a large heterogeneity across initial

health statuses. In particular, for those with bad initial health, the marginal benefit of in-

vestment is higher at low amounts, inducing low share of zero medical utilizations and high

share of partial treatment of sicknesses, but not necessarily over-investment. In contrast,

individuals with good initial health have higher incentives to over-invest in health. As such,

the calibrated model is able to match the empirical differences in medical expenditures and

health transition probabilities across health statuses. The model also captures discrepancies

in investment choices across insurance status of workers that are in line with empirical obser-

vations. We further validate our model’s ability to match untargeted moments that govern

health outcomes and health investment incentives, both for under- and over-investment.

In particular, our model predicts that 16.7% of workers choose under-investment, which is

similar to the 18.6% from NHIS.

Our simulation of the China shock induces a 5.75% drop in manufacturing sector wage, in

line with Autor et al. (2014)’s estimates that range between 2.7% and 7.2%. The reduction

in wage income, however, leads to very little change in the transition probability to future

good health for employed workers with bad initial health, because their health production

function implies low marginal benefits for the level of health investment that they choose.

In contrast, employed workers with good health experience substantial reductions in their

future good-health probability. These model predictions are consistent with our empirical
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estimates based on the PSID data. In addition, our model suggests that the adverse health

effects of the China shock are especially pronounced for the uninsured workers with severe

sickness shocks. For those with moderately (the most) severe sickness, the model predicted

IPW elasticity of future good-health probability is about twice as large in magnitude as their

insured counterparts. The non-linearity arises because a larger share of workers with the

most severe sickness choose zero treatment in the pre-China economy, and so their transition

probability to good health cannot decrease further.

In the aggregate, for all employed workers, the model-generated IPW elasticity of future

good-health probability is −0.023, which is about two-fifths of the magnitude of our empirical

estimates. This result suggests that the mechanism through optimal health investment, the

only mechanism through which China shock affects health in our model, is quantitatively

important. For all workers, both employed and unemployed, the model predicted good-health

elasticity is -0.024. A back of the envelope calculation indicates that, the China shock led

nearly half a million individuals in the U.S. manufacturing sector into bad health, resulting

in approximately 100,000 more Emergency Room visits and 200,000 more in-patient hospital

days per year.

In order to explore the efficacy of potential policy responses, we simulate a post-China

economy in which all individuals are covered by health insurance. In this counterfactual,

universal health insurance would substantially reduce under-investment of health, relative

to both the pre- and post-China equilibria, and induce all workers to seek (some levels of)

treatment when facing a sickness shock. Therefore, universal health insurance would remedy

over 80% of the overall adverse health effects of the China shock. These results of our

counterfactual simulations are consistent with the empirical finding that under-investment

in health is far more common in the U.S. than in the high-income countries with universal

health insurance (e.g. Davis and Ballreich, 2014).

Given the large geographical variations in the exposure of import penetration, we further

quantify the efficacy of universal health insurance across commuting zones and across sickness

shocks. In commuting zones with high import penetration that led to large wage declines,

workers’ health investment decreases substantially. Because health insurance does not cover

the amount of over-investment, universal health insurance would provide limited overall

remedy for these commuting zones. For the individuals with the most severe sickness shocks,

however, universal health insurance would still be highly effective in shielding their health
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from the negative impacts of the China shock.

Related Literature A number of recent studies have used quantitative dynamic models

to explore how specific mechanisms, such as migration, labor force participation, and college

education, contribute to the effects of the China shock on earnings, employment, and welfare

(e.g., Lyon and Waugh, 2018; Caliendo et al., 2019; Carroll and Hur, 2020; Ferriere et al.,

2021). Meanwhile, several empirical studies (e.g. Adda and Fawaz, 2020; Pierce and Schott,

2020) have documented that the China shock had detrimental effects on workers’ health,

increasing hospitalizations and mortality.1 We bring these two lines of work together by

studying how workers’ optimal choice of health investment leads to the endogenous evolution

of their health over time, and how much this mechanism contributes to the adverse health

effect of the China shock. We also explore the efficacy of potential healthcare policy responses

after the China shock.

There has also been a growing literature that use structural models to evaluate how

healthcare policies and technology affect health and welfare, where the quantification is

guided by micro data of health. Aizawa and Fang (2020), Hosseini et al. (2021), and De Nardi

et al. (2023) abstract away from endogenous health investment decisions. On the other hand,

Cole et al. (2019) and Lukas and Yum (2023) incorporate health investment through efforts

(e.g., exercise), and Fonseca et al. (2021) model endogenous medical spending but abstract

away from sickness shocks. Relative to this literature, our flexible health production function

implies that workers may optimally choose to over-invest or under-invest in response to

sickness shocks, and so our model is able to make contact with the shares of zero medical

utilizations, a salient feature in the micro data of health that has been overlooked in the

literature.

Lastly, empirical studies find mixed effects on how health insurance impacts health out-

comes (see Baicker et al., 2023 for a recent survey of this literature). For example, an early

study by Baicker et al. (2013) shows that Medicaid coverage in Oregon lowers the rate of

depression but generates no significant improvements in measured physical heath outcomes.

More recent empirical investigations have found positive effects of health insurance on health

1Pierce and Schott (2020) estimates the effects of trade liberalization on mortality due to the “deaths of
despair” (e.g., drug overdose, suicide) introduced in Case and Deaton (2015). These are conditions for which
the usual medical utilizations (e.g., hospital visits) may not be the most effective treatment. Our focus is on
more general types of sicknesses that impact a broader population.
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outcomes. These include Borgschulte and Vogler (2020), Goldin et al. (2021), and Miller et al.

(2021), where health insurance is found to lower mortality rates. Relative to this literature,

our theoretical model clarifies how health insurance affects health through the mechanism of

optimal health investment, and our quantification shows that this mechanism is important

in the context of the China shock.

The rest of the paper is organized as follows. In Section 2, we present empirical evidence

of the effects of the China shock on heath of workers. Section 3 presents our model of

heterogeneous agents with endogenous health evolution. The calibration strategy is detailed

in Section 4 and its results are presented in Section 5. Our quantitative analyses, evaluating

the effects of the China shock and the role of health insurance, are presented in Section 6.

2 Empirical Motivation: Effects of Import Penetration

On Health Status

In this section, we combine the measures of import penetration with the Panel Study of

Income Dynamics (PSID) data to estimate the causal effect of import penetration on the

probability of good health. We conduct our estimation using both region-level and worker-

level data. Our estimation results corroborate and enrich previous results from the literature,

and provide both quantitative and qualitative benchmarks for the predictions of our model

in Sections 5 and 6 below.

2.1 Data

In this subsection, we outline our data and the construction of our main variables, and then

present and illustrate the salient features of our data.

Import Penetration per Worker We measure the size of the China shock as import

penetration per worker (IPW) following Autor et al. (2013):

IPWcz,t =
∑
j

Lcz,j,t
Lcz,t

×
MCHN

j,t

Lj,t
. (1)
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In Equation (1), MCHN
j,t and Lj,t are, respectively, the US imports from China and employ-

ment in industry j in year t, Lcz,j,t is the employment in commuting zone cz in industry j

and year t, and Lcz,t is the employment in commuting zone cz in year t. Intuitively, IPWcz,t

measures the weighted average of Chinese imports per worker, across industries, in commut-

ing zone cz in year t, where the weights are the industries’ employment shares in cz in t. In

order to control for potential endogeneity in US imports, we follow Autor et al. (2013) and

use the following instrument for IPWcz,t:

IPWIV
cz,t =

∑
j

Lcz,j,t−10
Lcz,t−10

×
MOTH

j,t

Lj,t−10
. (2)

As compared with the IPW measure of (1), its instrument, (2), uses U.S. imports from eight

other high-income countries (Australia, Denmark, Switzerland, Finland, Japan, Germany,

New Zealand, and Spain) MOTH
j,t and 10-year-lagged labor employments Lcz,j,t−10, Lcz,t−10,

and Lj,t−10 both at the commuting zone and the industry level.

Panel Study of Income Dynamics The rest of our data come from the PSID. We

restrict our sample to those between the ages of 18 and 64 (working-age population) who

work full-time (1,600 annual hours) in their initial year of entry into the PSID sample.

We use self-reported health as our measure of health status, which is common in both

the structural estimation literature (e.g. Cole et al. 2019; De Nardi et al. 2023) and applied

micro studies of health (e.g. Currie and Madrian, 1999), and recent studies show that self-

reported health is also a good predictor of future health events, such as hospitalization (e.g.

Nielsen, 2016). The use of self-reported health also fits well with our inquiry, because the

PSID data for self-reported health span the years of the China shock, 1991 through 2011.2

To be specific, in PSID, each respondent is asked to rate his health into five levels (from

excellent to poor, or 1 through 5). We combine the top two levels into the single category

of good health, and combine the other three levels into bad health.

We then obtain other worker characteristics from PSID, such as age, gender, income,

and industry affiliation. In addition, we obtain the restricted commuting-zone identifiers, in

order to combine the worker-characteristics data with the IPW data discussed above.

2The objective health measures in PSID (e.g., indicator variables of diabetes, asthma, etc.) start in 2003,
which makes it impossible for us to exploit the IPW variations before 2003.
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Table 1: Descriptive Statistics

Variable All
by IPW Quartile

Q1 Q2 Q3 Q4

IPW ($,000/Worker) 1.44 0.22 0.54 1.17 3.43

(1.68) (0.09) (0.12) (0.28) (2.05)

Age 41.43 39.96 40.76 41.62 42.99

(10.97) (10.31) (10.69) (10.95) (11.51)

Male 0.78 0.78 0.78 0.79 0.78

(0.41) (0.41) (0.41) (0.41) (0.42)

College 0.56 0.53 0.56 0.56 0.60

(0.50) (0.50) (0.50) (0.50) (0.49)

Labor income (log) 10.73 10.69 10.78 10.72 10.71

(0.86) (0.80) (0.87) (0.87) (0.88)

Health status (5 levels) 3.82 3.89 3.87 3.83 3.72

(0.92) (0.90) (0.90) (0.92) (0.95)

Health status (Good-Health Dummy) 0.65 0.68 0.67 0.65 0.61

(0.48) (0.47) (0.47) (0.48) (0.49)

Manufacturing Dummy 0.20 0.18 0.22 0.19 0.21

(0.40) (0.38) (0.41) (0.40) (0.40)

Note: Authors’ calculations from the PSID data in years from 1991 to 2011 using longitudinal individual
sample weights. The sample is restricted to those who work more than 1,600 hours in their initial year
of entry into the PSID. The averages of the sample are reported with standard deviations in parentheses.
Labor income is expressed in 2015 dollars. Health status in five levels assigns a value between 1 and 5 with
1 being in excellent health. The Good-Health dummy assigns the value of one to the top two levels of health
(“Good” health) and zero otherwise (“Bad” health).

Descriptive Statistics of the Merged IPW-PSID Data The merged data set includes

508 unique commuting zones and about 33,000 worker-year observations. Table 1 reports

the summary statistics of the merged data set for the full sample and then by IPW quartiles.

The average IPW in the data is $1,440 per worker and the IPW distribution features a large

variation as seen by the quartile averages. Most of the workers in our sample are male and

about two thirds of them are in good health. Importantly, the mean value of the good-health

dummy, our measure of health status, monotonically decreases across the quartiles of IPW,

implying that exposure to import competition from China is associated with low probability

of good health. In the rest of this section, we establish the causality of the effects of IPW.

2.2 Effects of Import Penetration: Region-Level Analyses

We first conduct a region-level analysis by utilizing cross-sectional variations. Although our

measure of IPW is at the commuting zone level, some commuting zones in the data only have
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small numbers of observations. As this may cause the dependent variable to be noisy, we

aggregate commuting zones into regions by their IPW exposure. Specifically, our estimation

equation, following Autor et al. (2013), is

∆GHSHr,t = β + βt + γ ·∆IPWr,t + εr,t, (3)

where the dependent variable, ∆GHSHr,t, is the change in the share of individuals with good

health in region r within period t; βt is the period fixed effect; and ∆IPWr,t is the change in

the IPW in region r in period t. Because we instrument the change in import penetration

per worker, ∆IPWr,t, using the change in its instrument, (2), we interpret the coefficient

estimate of γ as the causal effect of the China shock on the population share of good health.

In column (1) of Table 2, we report results using two time periods, 1991-1999 and 2001-

2007, and 10 decile bins of IPW exposure per period. The F -statistic of the first-stage

estimation is 102.69, and γ, the coefficient estimate of ∆IPWr,t is negative and statistically

significant, suggesting that increases in import penetration per worker reduces the share of

workers with good health in the region. Dividing the coefficient estimate of −0.025 by the

mean value of the good health share, we obtain that the elasticity of good-health share with

respect to import penetration per worker is −0.0532.

Table 2: Import Penetration and Health Distribution, Region-Level Results

Dependent variable: Change in regional share of individuals with good health

(1) (2) (3) (4)

Time Periods 1991-1999 & 2001-2007 1991-2007

# Bins by ∆IPW 10 20 20 40

γ -0.0253∗∗ -0.0219∗∗ -0.0295∗∗ -0.0328∗∗

(-2.54) (-2.01) (-2.30) (-2.22)

Implied Elasticity -0.0532 -0.0480 -0.0692 -0.0781

First-Stage F -Statistic 102.69 79.36 39.41 46.14

Number of Observations 20 40 20 40

Note: The table reports regression coefficients γ from Equation (3) with t-statistic in parentheses. We use
the number of observations in each region as weight. The first-stage F -statistics are for the ∆IPWr,t. ∗
p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

This result is also illustrated in Figure 1(a), which plots the change in the population

share of good health, ∆GHSHr,t, against the predicted value of ∆IPWr,t by its instrument.3

The numerical labels show the decile and the label “∗” indicates the second period; e.g.

3The period fixed effect, βt, has been netted out of the values from both axes.
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Figure 1: Import Penetration and Health Distribution

(a) Two time periods, with 10 ∆IPW bins
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(b) One time period, with 20 ∆IPW bins

1

3

4 6

8

2

5

9
7

14

10

12

11

17

16

15

13

19

18

20

-.1
5

-.1
-.0

5
0

.0
5

C
ha

ng
e 

in
 G

oo
d 

H
ea

lth
 S

ha
re

0 1 2 3 4
Change in IPW $000/Worker

Note: Each point in scatter plots represent each observation. Plot (a) and (b) correspond to specifications
in columns (1) and (3) in Table 2, respectively.

“2” is the 2nd decile from the first period, 1991-1999, and “7∗” is the 7th decile from the

second period, 2001-2007. The scatter plot clearly illustrates a negative relationship between

∆GHSHr,t and the predicted value of ∆IPWr,t.

Columns (2) to (4) of Table 2 show the results of different implementations of regression

(3), where we use 20 bins (columns (2) and (4)) and/or use a single, longer, time period

of 1991-2007 (columns (3) and (4)) similar to Autor et al. (2013). Figure 1(b) illustrates

the results in column (3), with one single time period and 20 bins. In all specifications, the

coefficient estimate is negative and statistically significant, and its value is similar to column

(1). These results suggest that the adverse effects of the China shock on workers’ probability

of good health are robust.

Overall, Table 2 shows that the elasticity of the probability of good health with respect

to IPW ranges between −0.048 and −0.078, with a mid-point of −0.060. We interpret this

elasticity as the estimated total effect of the China shock on workers’ health status, from

the pre-China-shock equilibrium to the post-China-shock equilibrium, and will use it as the

quantitative benchmark of our model’s predictions in Sections 5 and 6 below.

2.3 Effects of Import Penetration: Worker-Level Analyses

In the previous subsection, we have utilized long-differences (8 to 16 years) and cross-sectional

variations to identify health effects. Here, we complement our region-level analysis by ex-

ploiting the rich worker-level panel data to estimate the causal effects of IPW, as well as
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their heterogeneity across worker characteristics.

The econometric specification for our worker-level analysis is:

GHi,cz,t = βi + βt +
∑
k

γk · Ik,t0 · IPWi,cz,t−1 + α · Zi,t + εi,cz,t. (4)

In Equation (4), the indicator variable GHi,cz,t takes the value of 1 if worker i, living in

commuting zone cz, has Good Health in year t. The coefficients βi and βt are, respectively,

worker- and year-fixed effects, and Zi,t is a vector of time-varying worker-characteristic con-

trols (e.g., education). Given the annual frequency of the data, we include IPW in year t−1,

to ensure that exposure to import competition had happened before the realization of the

health status, GHi,cz,t. The coefficient of interest is γk, where Ik,t0 = 1 if a worker has a

certain characteristic k (e.g., works in manufacturing sector) in his initial year t0. Thus, the

coefficient γk allows us to measure the group-specific effects of the IPW. Additionally, we

estimate the model incorporating manufacturing-by-year fixed effects instead of year fixed

effects, to address concerns that workers in manufacturing and non-manufacturing sectors

could have experienced different trends in overall health status during our sample period.

The following features of the estimation of Equation (4) allow us to interpret γk as the

causal effect of import penetration. First, both the IPW measure and the worker charac-

teristic are lagged relative to the dependent variable. Second, we instrument IPWcz,t−1,k

using the exogenous variations in IPW IV
cz,t−1,k. Third, the worker fixed effects, βi, control

for the idiosyncratic and time-invariant factors that could be important for workers’ health,

such as early life experiences, birth weight, and genetic differences, some of which have been

emphasized in previous studies.4 While the first two features have been used in previous

studies, the use of worker fixed effects is novel. It implies that regression (4) asks the fol-

lowing question: as import penetration increases in commuting zone for exogenous reasons,

relative to the sample mean, do the workers in the commuting zone suffer lower probabilities

of being in Good Health in the following year, relative to the sample mean? Because the

error term εi,cz,t might be correlated across workers within cz by year, we cluster standard

errors by cz in all our estimation.

Table 3 reports the results from our analysis. In column (1), we pool across all workers.

While the coefficient on import penetration is negative, this effect is not statistically signifi-

4See, e.g. Maccini and Yang (2009) and De Nardi et al. (2023).
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Table 3: Import Penetration and Future Health, Worker-Level Results

γk Dependent variable: Probability of good health Elasticity

(1) (2) (3) (4) (∆75-25%)

All -0.019 -0.042

(-1.60) (-2.8 pp)

Manufacturing -0.025∗∗∗ -0.054

(-2.10) (-3.7 pp)

Non-Manufacturing -0.012 -0.026

(-1.13) (-1.8 pp)

Income Q1 -0.050∗∗∗ -0.110

(-2.81) (-7.3 pp)

Income Q2 -0.026 -0.056

(-1.44) (-3.7 pp)

Income Q3 -0.023∗ -0.050

(-1.84) (-3.3 pp)

Income Q4 -0.012 -0.026

(-0.98) (-1.8 pp)

Initial Good -0.031∗∗ -0.068

(-2.51) (-4.6 pp)

Initial Bad 0.019 0.042

(1.62) (2.8 pp)

First-Stage F 12.92 52.71 15.10 58.06

Number of Obs. 33,376

Note: The table reports regression coefficients γk from Equation (4). The standard errors are clustered by
commuting zone and t-statistics are in parentheses. All regressions include year fixed effects and the vector
of time-varying worker characteristics, Zi,t, as controls. Columns (2)-(4) report the coefficient estimates
by subgroup (γk). In addition, the first-stage F -statistics are for the first endogenous variables. The F -
stats of the other endogenous variables are similar, and often times larger in magnitude. The ∆75-25% are
obtained from comparing predicted good health probabilities of workers in 75-percentile IPW commuting
zone compared to those in 25-percentile IPW commuting zone. ∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

cant. In columns (2) through (4), we divide the workers into their initial-year-characteristics

subgroups, and report the coefficient estimates by subgroup. Column (2) shows that the ef-

fect of import penetration on manufacturing workers is negative and statistically significant,

and about twice as large in magnitude as compared with the effect on non-manufacturing

workers. This result is reassuring, because during the China shock, import penetration pri-

marily impacted the U.S. manufacturing sector. Our coefficient estimates in column (2)

implies that the elasticity of IPW on the Good health probability is −0.054 for manufactur-

ing workers and −0.026 for non-manufacturing workers (although the latter is statistically

insignificant), and that the commuting zone at the 75th percentile of the IPW distribution

has 3.7 pp lower probability of future good health for manufacturing workers relative to
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the commuting zone at the 25th percentile. These findings align with our earlier results in

Table 2, using region-level data, where the implied elasticities range between −0.048 and

−0.078. They also corroborate, and add to, the findings from prior studies by Adda and

Fawaz (2020) and Pierce and Schott (2020), which investigate different dependent variables

(e.g. incidences of hospitalization and mortality).

Column (3) of Table 3 indicates a particularly pronounced effects of import penetration

on workers whose initial-year income is in the first quartile. This result is consistent with the

results from Autor et al., 2014, indicating that the China shock has a more adverse effect on

the earnings of low-income workers. Lastly, in Column (4), we see that the IPW had more

adverse health effects on the workers with good initial health than on those with bad initial

health. We will show, in Section 5 below, that this result is consistent with the qualitative

predictions of our model.

In summary, we have shown that the increase in import penetration from the China shock

caused statistically and economically significant adverse impacts on the workers’ probability

of good health. These results raise a number of novel questions. For example, why is

the effect of the China shock strong for the initially-good-health workers, but statistically

insignificant for those with initial bad health? Through which mechanism does the China

shock impact workers’ health? How important are such mechanisms, quantitatively? These

questions call for the development of a quantitative model for how workers’ health evolves

over time. We turn to this task now.

3 Model

In this section, we develop a trade model with endogenous health dynamics, by sketching the

economy’s trade and production, the workers’ optimization problem, the government’s role,

and finally, the economy’s competitive equilibrium. We also zoom in on the key features of

the model that allow us to make contact with the data.

3.1 Production and Trade

We start with the production and trade side of the economy, where all markets are compet-

itive. The price and quantity of the final good are P and Y , respectively, and we normalize
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P = 1. The production technology of the final good is Cobb-Douglas with respect to the

manufacturing good, whose price and quantity are Pm and xm, respectively, where m in-

dexes the manufacturing sector. Let φm denote the manufacturing sector’s share in final

good production and thus,

xm =
φmY

Pm
. (5)

Equation (5) is the demand for the manufacturing good from the final good production. Both

the final good and the manufacturing good are non-tradable, and we are agnostic about the

rest of the economy, outside of the manufacturing sector.5

The manufacturing good, in turn, is assembled from domestic and imported inputs via

the following constant elasticity of substitution (CES) technology

xmS = A
[
ω

1
σ
mzm

σ−1
σ + (1− ωm)

1
σ (z∗m)

σ−1
σ

] σ
σ−1

, (6)

where A is the TFP, ωm is the weight of the domestic input, zm and z∗m are quantities of

domestic and imported inputs, and σ > 1 is the elasticity of substitution. Let pm denote

the price of the domestic input. Meanwhile, the price of the imported input is τ ∗p∗m, where

τ ∗ ≥ 1 represents the trade cost of manufacturing inputs. It is straightforward to show that

zm = ωm (pm) −σXmSP
σ−1
m , z∗m = (1− ωm) (τ ∗mp

∗
m) −σXmSP

σ−1
m , (7)

where XmS = PmxmS is the total expenditure for the manufacturing sector, and

Pm = A−1
[
ωm (pm) 1−σ + (1− ωm) (τ ∗mp

∗
m) 1−σ] 1

1−σ

relates the prices of the manufacturing good to the prices of its domestic and imported

inputs. Equation (7) is the demand for these inputs by the manufacturing sector.

Turning to supply, the domestic input is produced with labor according to the linear

technology, zmS = ψmLm, where ψm is productivity, and Lm is the labor supply (in efficiency

5Our model can be extended to incorporate a general equilibrium with multiple sectors. Such model
requires more assumptions (e.g., production technology in other sectors). As we want to focus on outcomes
of manufacturing workers, we choose to abstract away from production in other sectors. However, as we
describe in Section 4.3, we impose equilibrium conditions in the manufacturing sector, endogenizing the
equilibrium wage effect in the manufacturing sector in response to the China shock.
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equivalent units) of the manufacturing sector. We assume that manufacturing labor is im-

mobile to the rest of the economy, as in the specific factors model in the trade literature.

The price of the domestic input is thus proportional to the wage rate wm:

pm =
wm
ψm

. (8)

The domestic input is tradable. When it is exported, it faces the foreign demand of

D∗m (pm) ≡ D∗m · (pm) −σ, where D∗m incorporates demand shifters as foreign expenditure

and export costs. Finally, we assume that our economy is a small open economy with re-

spect to the rest of the world, and so the supply of imported manufacturing inputs z∗m, is

elastic.

In summary, the manufacturing-sector setup of our model allows us to quantify the China

shock using the standard practice in the trade literature, and to endogenously determine

workers’ wage, wm, in the post-China-shock equilibrium (see Subsection 4.3 below). We now

move on to describe the workers in our model.

3.2 Workers

In a nutshell, when workers make decisions about health investments given today’s health

status, they face the trade-off between today’s costs in terms of consumption and the future

benefits of good health. We incorporate the main elements of both good-health benefits (e.g.

in terms of wage, sickness shock, and employment status) and consumption costs (e.g. asset

and insurance status), in order for our model to match key features of the data.

Endowments and Preferences The economy is populated by a measure one of workers

who are infinitely-lived. Workers are endowed with a unit of time that they can use for work

or leisure. A worker’s employment status is denoted as l ∈ {0 (unemployed), 1 (employed)}.
Individuals differ in their health status x∈ {G (ood) , B (ad)} that affects sickness shock

process, labor income, job transition probability, and utility.

Each period, a worker receives a sickness shock ε (x) with probability f (ε;x), and draws

his labor endowment z, from an AR(1) distribution in logs with persistence ρz and standard

deviation σz. The productivity effect of health is captured by ν (x), and the worker’s labor

income, if he is employed, is w · ν (x) · z. Workers face exogenous job separation rate of
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δ (x, l) and have preferences over consumption represented by U (c; l, x), in which we allow

marginal utility of consumption to depend on health and employment statuses. Workers face

borrowing constraints and have access to risk-free asset with return r.

Health Production and Insurance Probability of being in good health in the next

period Pr (x′ = G) is determined by a function F (H;x, ε). It depends on health status in

the current period x, sickness shock ε,and health investment H. As we have two health

statuses, Pr (x′ = B) = 1− Pr (x′ = G). We do not impose any restrictions on the amount

of health investment relative to the size of the sickness shocks. However, we assume first,

that any health investment that is smaller than the size of the sickness shock is used to

treat the sickness shock (and later measure it using medical expenditures from the data),

and second, that investments used to treat sickness shocks and other monetary investments

(e.g., massage or healthy food) are perfect substitutes.

Individuals have access to health insurance with probability ζ (l) specifying the linkage

between employment and health insurance under the prevalence of Employer Sponsored

Health Insurance (ESHI) in the US. Health insurance premium is π and it covers a χ (ε;x)

share of health investment used for treating sicknesses. Any other monetary investments are

not covered by insurance.

3.3 Government

The government does not consume final goods, but makes transfers. To be specific, it pays

unemployment benefits b, guarantees workers a minimum consumption floor of amount c,

and ensures that health insurance sector makes zero profits through lump-sum subsidies

(either positive or negative). These transfers are financed using taxes on labor income T (y).

The consumption floor captures various means-tested government programs, in a similar

manner as in studies with medical expenditure risks, e.g., De Nardi et al. (2023). We denote

the transfers made to ensure a minimum consumption floor as tr, and individuals for whom

tr > 0 are not allowed to save or invest in health. Note health insurance companies collect

premium π and pay the insured at coinsurance rate of χ (ε;x) up to ε (the sickness shock).

That is, their profit on each insured individual is π − χ (ε, x) min {H, ε}, which is zero if

the premium is actuarially fair. We assume that premium is exogenous, which does not

guarantee that health insurance companies make zero profits. Instead, we assume that the
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government makes transfers to insurance companies to ensure zero profit.6 Lastly, we denote

G as exogenous expenditures.

3.4 Optimization Problem

Let state variables for worker problems be s ≡ {x, a, in, ε, z}, denoting health, asset, insur-

ance status, sickness shock, and labor productivity shock (only relevant for the employed)

respectively. Worker problem is

V l (s) = max
c≥0,a′≥0,H≥0

U (c+ tr, l;x) (9)

+β
∑
x′

Pr (x′) δ (l, x′)Ein′,ε′V 0 (x′, a′, in′, ε′) +

+β
∑
x′

Pr (x′) (1− δ (l, x′))Ein′,ε′,z′V 1 (x′, a′, in′, ε′, z′)

s.t. c+ a′ + H̃ = I (l, x) + (1 + r) a+ tr (10)

tr = max {0, c− (I (l, x) + (1 + r) a)} (11)

H̃ =

H if uninsured

π + (1− χ (ε;x)) min {ε,H}+ max {H − ε, 0} if insured
(12)

Pr (x′ = G) = F (H;x, ε) , P r (x′ = B) = 1− F (H;x, ε) (13)

I (l, x) =

w · ν (x) · z − T (w · ν (x) · z) if l = 1

b if l = 0.
(14)

The worker maximizes his utility (9), which consist of his utility in the current period plus his

discounted utility that depend on his employment status in the next period. The expectation

for the realization of statuses in the next period include probability of being insured ξ (l′),

the sickness shock probability f (ε′;x′), and labor productivity f (z′; z) (if employed). In the

budget constraint (10), his expenditures are consumption c, tomorrow’s asset a′,and out-

of-pocket health investment expenditures H̃, and government transfers (11) that guarantee

a minimum consumption floor of amount c. The worker’s resource on the right hand side

of the budget constraint (10) is his income I (l, x)—after-tax labor income if employed and

6In reality, Employment Sponsored Insurance system is tax-deductible for employers and employees,
so this may reflect such policy. Effectively, this is equivalent to government running the health insurance
system.
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unemployment insurance if unemployed as expressed in (14)—and assets (1 + r) a.

Equation (13) shows that the transition probability into future good health depends on

both the sickness shock ε and endogenously chosen health investment H. Upon receiving a

sickness shock, we say that an individual “under -invests” in health if the total amount of

health investment H is smaller than the sickness shock ε; i.e. H < ε. Under-investment

can be due to partial treatment (i.e. 0 < H < ε) or zero treatment (i.e. 0 = H < ε). If

0 < H = ε, an individual has chosen full treatment of the sickness shock. If H > ε, we say

that an individual “over -invests” in health in the amount of H − ε. Thus, we categorize an

individual’s medical expenditure to be of the amount min {ε,H} and his over-investment,

or monetary investment in health not in the form of medical expenditures, to be of the

amount max {H − ε, 0}. Given total health investment H, we elaborate on the individual’s

out-of-pocket health investment expenditures H̃ by insurance status in (12). Uninsured

individuals incur all investment amounts out of pocket. Insured individuals pay premium

π and 1− χ (ε;x) share of the medical expenditures, min {ε,H}, but they pay 100% of the

over-investment amount max {H − ε, 0}.
Intuitively, the dynamic asset and health investment choices of workers weigh the trade-

offs between today’s consumption costs, returns to asset holding, and the future benefits of

good health. In particular, the health investment choices vary across worker characteristics

including the insurance status and the size of the sickness shock, which are the key features

of our model.

3.5 The Competitive Equilibrium

Because the workers in our model are infinitely-lived, our equilibrium refers to the steady

state. Let the (steady-state) distribution of workers in the manufacturing sector over the

state variable s be µ (s).

Market Clearing The labor market clearing condition is

Lm =
∑
s

ν (x) · z · Il=1µ (s) , (15)

where effective labor supply depends on workers’ health and productivity and the stationary

distribution.
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The market for the domestic variety of manufacturing inputs also clears

zmS = zm +D∗m · (pm) −σ, (16)

and the market clearing condition for the manufactured good is simply

xmS = xm. (17)

Equilibrium Given government policies, a stationary equilibrium in the manufacturing

sector consists of prices {wm, pm, Pm}, value functions and policy functions for workers

{V (s) , c (s) , a′ (s) , H (s)}, policies for firms {Lm, zm, z∗m, xm}, government expenditures G,

and a stationary measure µ (s) such that:

1. Value and policy functions solve the household’s optimization problem (9).

2. Prices follow (5), (6), (7), and (8).

3. Government expenditures G are such that the government’s budget constraint holds,

that is,

∑
s

b · Il=0µ (s) +
∑
s

tr (s) · µ (s) (18)

+
∑
s

[χ (ε, x) min {H, ε} − π] · Iin=1µ (s) + G =
∑
s

T (y (s))µ (s)

4. Markets clear; i.e., (15), (16), and (17) hold.

5. The probability distribution µ (s) is a stationary distribution associated with policy

functions.

4 Calibration Procedure

In this section, we map our model to the data to quantify the effects of the China shock on

workers’ health. In addition to PSID, we use the following standard data sources to both

set parameter values exogenously and generate target moments: Medical Expenditure Panel

Survey (MEPS), Current Population Survey (CPS), STructual ANalysis Database (STAN),

and World Development Indicators (WDI).
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We first lay out the parameters whose values we treat as determined (Subsection 4.1). We

then discuss how we calibrate the parameters of the health production function and utility

function in Subsection 4.2. For this part, we first document motivating empirical patterns for

our choice of sickness shock parameters and functional form of the health production function.

We then show how we choose certain parameters exogenously but calibrate the others within

the model (the inner loop). Finally, we describe how we calibrate the production and export-

related parameters in the pre- and post-China economies (the outer loop) in Subsection 4.3.

4.1 Predetermined Parameters

The top panel of Table 4 lists the household parameters whose values we take from outside

the model. To be specific, the coefficient of relative risk-aversion ρ, discount factor β, and

interest rate r are set to 1.5, 0.95, and 0.02, respectively, which are fairly standard values

in the literature. Then, we use the PSID data in pre-China years (1991–1996) to obtain the

average income of workers by health status in the manufacturing sector. In our model, the

average labor income of a worker with health type x is wm·ν (x). We normalize ν (x = G) = 1,

to obtain obtain ν (x = B) = 0.81 from the income gradient of health. We also obtain wm

for the pre-China-shock equilibrium from the average income of workers with good health.

The productivity shock process has the persistence and standard deviation parameters of

0.95 and 0.15, and we discretize the process following Tauchen (1986). The job continuation

and job finding rates by health status are from the Annual Social and Economic Supplement

of the Current Population Survey (CPS-ASEC) data in years 1996-1999.7

We set the unemployment benefit to 20% of average wage income across health statuses

which amount to $9,086. Additionally, the consumption floor guaranteed by the government

is $3,000, similar to one estimated in De Nardi et al. (2023), and the proportional income

tax rate is 20%.

4.2 Sickness Shocks, Health Production, and Preferences

On the household side, the remaining parameters are those governing (i) the sickness shock

process {ε (x) , f (ε;x)}; (ii) the health production F (x′ = G;x, ε,H); and (iii) the prefer-

ences {ι (x, l)}. In addition to the PSID data, we use Medical Expenditure Panel Survey

7The CPS data allows us to track workers’ employment statuses annually for a larger sample of individuals
than PSID.

21



Table 4: Predetermined Parameters

Parameter Description Values

Household and Labor Market

σ Risk aversion 1.5

β Discount factor 0.9

r Interest rate 0.02

wm Pre-China wage (earnings) $50,211

ν (x = B) Health effect on wage 0.81

(ρz, σz) Income shock process: Persistence, St.Dev. 0.95, 0.15

1− δ (E, x) Job continuation rate: Bad; Good 0.87; 0.92

1− δ (U, x) Job finding rate: Bad; Good 0.18; 0.32

Government Policies

b Unemployment benefit $9,086

c Consumption floor $3,000

τ Income tax rate 20%

Production

ωm Home bias 0.5

σ − 1 Trade elasticity 3

φm Cobb-Douglas share of manufacturing 0.17

πDm,pre/post Domestic share of manufacturing: Pre; Post 0.85; 0.71

(MEPS) data that contains individual-level medical expenditures to establish stylized facts

to guide us through the calibration process.8

Motivating Empirical Patterns We document key empirical patterns from MEPS in

two areas: firstly, medical expenditures and medical utilizations, and secondly, transition

probabilities to good health, by worker characteristics.9 These stylized facts motivate the

way we measure sickness shocks from the data and parameterize and identify the health

production function.

In Table 5, we document average medical expenditures and the shares of individuals

with zero medical utilizations by eight groups—current health status (2) × employment

status (2) × insurance status (2). For the latter, we use the Household Component Event

files (MEPS-HC) of the MEPS Medical Conditions data to identify individuals who never

8PSID only includes family-level medical expenditures, which is not ideal for our purpose. Further,
MEPS contains the same health variables as in PSID, allowing us to be consistent in measurement.

9For parameters governing health production, we calculate moments using all workers in the sample
without restricting the sample to those in the manufacturing sector (as we do for wage moments) for a larger
sample size. The underlying assumption is that all individuals face the same health production technology
regardless of the sector they are employed in.
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reported medical events or utilizations, such as outpatient visits and prescribed medicine.10

Table 5: Medical Expenditures and Medical Utilizations

Average medical expenditures (positive only)

Bad Emp/Ins $3,689 Emp/Unins $2,412

Unemp/Ins $3,493 Unemp/Unins $2,148

Good Emp/Ins $2,318 Emp/Unins $1,625

Unemp/Ins $2,376 Unemp/Unins $1,591

Share of individuals without medical utilizations

Bad Emp/Ins 0.05 Emp/Unins 0.20

Unemp/Ins 0.06 Unemp/Unins 0.20

Good Emp/Ins 0.08 Emp/Unins 0.29

Unemp/Ins 0.08 Unemp/Unins 0.27

Note: For medical expenditures in Table 5, we document group-level average expenditures among those
who have positive spending, after controlling for age, sex, race, education, Census region, marital status,
and survey panel dummies. We construct medical utilizations using household-reported medical events in
MEPS-HC data. An individual is considered to have utilized medical service if one had prescribed medicine,
dental visit, outpatient event, home health provider event, office-based medical provider visit, emergency
room visit, or other medical expenses.

Next, to better understand the relationship between medical expenditures, insurance

status, and health transitions, we run the following regression:

Healthi,t+1 = β0 + β1 · Healthi,t +
10∑
k=1

β2,k ·Dmed
i,t,k + Γ ·Xi,t + ε.

The variable Healthi,t(t+1) takes a value of 1 if the individual is in Good health, and 0 oth-

erwise in year t (t+ 1). We then construct deciles of medical expenditures among insured

individuals with positive expenditures, and assign each individual i with a dummy variable

Dmed
i,t,k where k indicates either a zero expenditure or the decile of medical expenditure (total

of 11 groups) in year t. The individual-level controls Xi,t include the number of reported

medical conditions, employment, and insurance status. In Figure 2 are predicted probabil-

ities of being in good health in the future by this period’s health status ((a) for initially

bad health individuals and (b) for initially good health individuals), this period’s medical

expenditure decile (x-axis), and insurance status (◦ for insured and × for uninsured). The

first notable feature of both panels in Figure 2 is the monotonically decreasing future good

health probabilities in current medical expenditure deciles for all groups. It implies that a

10Event level data is a better measure than zero medical expenditure shares, because some individuals
might receive medical treatment free of charge, e.g., in emergency rooms or through charity care.
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large expenditure this period reflects the severity of the sickness shock a worker experienced.

Figure 2: Medical Expenditures, Insurance, and Future Health
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We now examine the heterogeneity across different worker characteristics. From Table

5, we note that individuals with good health incur lower medical expenditures and are less

likely to utilize medical services compared to those with bad health. Further, conditional

on characteristics and current medical expenditures, their probabilities of being in good

health in the future are higher than those with bad initial health: In Figure 2, the predicted

probabilities of being in good health for bad initial health in panel (a) range from 0.15 to

0.42, relative to 0.60 and 0.84 for those with good initial health in panel (b). These patterns

suggest that individuals with good health experience milder sickness shocks and that health

status is persistent.

Second, we compare expenditures and health outcomes of individuals across insurance

statuses. A salient feature of Table 5 is the large variations in medical expenditures and

utilization shares across insurance status: 8% of the employed and good-health individuals

report zero medical utilization if they are insured, but 29% do so if they are uninsured.

Conceptually, these variations may arise because the uninsured are healthier, or because

they are not able to receive sufficient medical care due to their lack of resources and access.

Figure 2 suggests that the latter is likely the main reason. It clearly shows that the uninsured

individuals have lower probability of being in good health in the future than the insured ones

in every single medical-expenditure decile, for both bad initial health (panel (a)) and good

initial health (panel (b)), even after controlling for various individual-level characteristics.
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We summarize these patterns as the following empirical facts.

Empirical Fact 1. Initial Health, expenditures, and future health

(a) Individuals with good initial health have lower medical expenditures and are less likely

to utilize medical services than those with bad initial health (Table 5).

(b) Conditional on demographic characteristics, individuals with good initial health have a

higher probability of being in good health in the next period than those with bad initial

health (Figure 2).

Empirical Fact 2. Insurance, expenditures, and future health

(a) Insured individuals incur higher medical expenditures and are more likely to utilize

medical services than uninsured individuals (Table 5).

(b) Conditional on medical expenditures and demographic characteristics, insured individ-

uals have higher probabilities of being in good health than uninsured individuals (Figure

2).

Sickness Shocks and Health Insurance The declining future good health probabili-

ties in current medical expenditures in Figure 2 suggests that high medical expenditures in

MEPS imply large (severe) values of the sickness shock ε in our model. In order to quan-

tify ε, however, we face the following two difficult problems with data availability. First,

although in the model, sickness shock, ε, is distinct from medical expenditures, min {H, ε},
we only observe medical expenditures in the data.11 Second, although we observe whether

an individual utilized medical services or not (lower panel of Table 5), it does not perfectly

coincide with whether an individual experienced a sickness shock this period. To make

progress, we assume that individuals who are insured and employed (those who are most

likely to have sufficient resources) choose full treatment of sicknesses. In addition, we also

assume that the uninsured face the same distribution of sickness shocks as the insured.12

These assumptions are consistent with Empirical Fact 2, where insured workers incur higher

medical expenditures and experience better health outcomes conditional on current period’s

medical expenditures (that reflect the severity of the sickness shock).

11Although MEPS asks respondents their medical diagnosis akin to sickness shocks in our model, it is
difficult, if not impossible, to translate the diagnosis into a numerical value.

12Implicitly, we abstract away from adverse selection in insurance status.
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Given these assumptions, we use medical expenditures for the insured and employed

individuals to parameterize the sickness shock distribution in our model. As reported in

Table 6 below, we discretize the sickness shock into five events, whose values differ by health

status consistent with Empirical Fact 1 showing a large discrepancy in expenditures and

outcomes across initial health statuses. In it, ε0 refers to the event of being sickness free

(i.e. ε = 0), and its frequency is given by the shares of the insured and employed with no

medical events as reported in the lower panel of Table 5 above. Then we construct the values

and frequencies of the remaining four sickness events, ε1 through ε4, by health status using

within-quartile averages of medical expenditures conditional on positive values. As reported

in Table 6, the size of sickness shocks are larger (ε (x = B) ≥ ε (x = G)) and the probability

of not getting any shock (f (ε0;B) < f (ε0;G)) is smaller for those with bad health relative

to their good health counterparts.

Table 6: Predetermined Parameters Regarding Sickness Shocks and Health Insurance

Parameter Description Values

ε0 ε1 ε2 ε3 ε4
ε (x) Sickness shocks Bad $0 $420 $1,490 $3,530 $9,320

Good $0 $270 $840 $1,870 $6,290

f (ε;x) Probability Bad 0.05 0.24 0.24 0.24 0.24

Good 0.08 0.23 0.23 0.23 0.23

χ (ε;x) Coinsurance rate Bad - 0.27 0.22 0.18 0.12

Good - 0.28 0.27 0.24 0.17

ζ (l) Insurance Prob. Emp. 0.81

Unemp. 0.57

π Insurance Premium $2,820

Note: All statistics are from the MEPS data (1996-2014). The values of sickness shocks ε (x) are constructed
from the predicted values of medical expenditures among the insured population after controlling for age,
sex, race, education, Census region, marital status, and survey panel dummies. We use fourth quantiles
conditional on positive spending for values ε1–ε4 by health status. The probabilities of not experiencing a
sickness shock f (ε0;x) are those of the insured individuals from MEPS-HC data as described in Table 5.
Coinsurance rate is calculated from MEPS using out-of-pocket expenditures and total medical expenditures,
and insurance premium is defined as an weighted average of sickness shocks, using f (ε;x) as weights.

For the insured, we use MEPS to obtain the coinsurance rate by sickness shock, χ (ε;x),

the insurance coverage rates by employment status, ζ (l), and the average health insurance

premium, π. We summarize these values in Table 6, and make the following observations

about them. First, we use expenditure-dependent coinsurance rates that help us capture

various components of insurance plans, such as deductibles and out-of-pocket maximum, in

a parsimonious way. Second, although we do not directly model insurance for low-income
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people, such as Medicaid, we allow for the unemployed to have health insurance, along with

other social insurance policies through the consumption floor. Finally, the insurance premium

stays constant across sickness shocks while the insurance coinsurance rate decreases, and so

health insurance is more useful for severe sickness shocks than for mild ones in our model.

These features of health insurance help our model predictions match the pattern in the upper

panel of Table 5 that the mean medical expenditure is higher for the insured, and generate

heterogeneous effects of the China shock across workers (see Section 6).

Health Production Function We use the following flexible Weibull function to describe

how the probability of future good health Pr (x′ = G), relates to today’s health x, sickness

shock ε, and health investment H:

F (x′ = G;x, ε,H) =

 1− α (x, ε) if H ≤ Hmin (x, ε)

1− α (x, ε) exp
[
− (H−Hmin(x,ε))γ(x)

λ(x)

]
if H > Hmin (x, ε) .

(19)

Motivated by Empirical Fact 1, we let all parameters of the health production function

(19) to vary by health status, x. On the other hand, none of the parameters depends on

health insurance or employment status. This means that health insurance and employment

status affect health only through workers’ optimal choice of health investment.

Figure 3: Health Production and Investment
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The health production function in Equation (19) has the following properties. First,

1 − α (x, ε) represents the baseline probability; i.e. even if H = 0, the probability of future

good health is 1− α (x, ε) > 0. We incorporate α (x, ε) because in the data, the probability

of future good health varies a lot across current health status (Figure 2). Intuitively, α (x, ε)
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increases with ε, given health status x (as illustrated in Figure 3(a)), because a large sickness

shock (e.g., cancer) may lower one’s baseline probability of being in good health. Second,

Hmin (x, ε) represents the minimum investment, below which health investment leaves the

probability of future good health unchanged at 1 − α (x, ε). The flat portion of the health

production function in Figure 3(a) helps visualize Hmin (x, ε). We incorporate Hmin (x, ε)

because in the data, many uninsured individuals report zero medical utilizations, and intu-

itively, when one is severely ill (e.g. cancer), a small amount of investment is not effective. In

order to limit the number of parameters to calibrate, we parameterize Hmin (x, ε) = s (x) · ε,
with s (x) ≤ 1; i.e., within health status x, the level of minimum health investment increases

as ε increases, but its share relative to ε stays unchanged. Third, when health investment

exceeds the minimum, F (·) is increasing in H, ∂F (·) /∂H > 0 approaches +∞ as H ap-

proaches Hmin (x, ε) from above, and F (·) is concave with respect to H, as long as γ (x) < 1

(which is the case in our calibration).

These features of the health production function, (19), imply that the optimal health

investment is H∗ = 0, Hmin (x, ε) < H∗ < ε (under-investment), H∗ = ε (full treatment), or

H∗ > ε (over-investment), but never H∗ ∈ (0, Hmin (x, ε)). Figures 3(b) and (c) illustrate

under- and over-investment, as well as the medical expenditure of min {H∗, ε}, and non-

medical health investment of max {H∗ − ε, 0}. Below, we further discuss how the flexibility

of health production function is useful in matching our model to the data moments of mean

medical expenditures, shares of zero medical events, and probabilities of good health.

Preferences We assume that the utility function is

U (c, l;x) =
[c · exp ι (x, l)] 1−ρ

1− ρ
, (20)

in which c denotes consumption and ρ is the relative risk-aversion parameter. The param-

eter ι (x, l) captures how health and work affects both the utility and marginal utility of

consumption (e.g., Low and Pistaferri, 2015). We normalize ι (x = G, l = 1) = 0, thus ι (x, l)

for x = B and l = {0, 1} represent differences in marginal utility of consumption from health

and/or employment statuses. If ι (x = B, l) < 0, being in the unhealthy state lowers utility,

and this provides incentives for health investment.
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Target Moments and Identification The parameters to be calibrated on the worker side

are health production parameters {α (x, ε) , s (x) , γ (x) , λ (x)} (16 parameters) and prefer-

ence parameters ι (x, l) (3 parameters). Meanwhile, our data targets are group-specific aver-

ages of (i) the sickness shock-dependent probabilities of tomorrow’s good health (analogous

to Figure 2 but with five sickness shocks, 20 moments); (ii) the share of population with

zero medical utilizations (as reported in Table 5, 8 moments); and (iii) the average medi-

cal expenditures (as reported in Table 5, 8 moments). We jointly calibrate the 19 model

parameters to target the 36 data moments.

In order to develop the intuition for how the parameters are identified, we first describe

the most salient effects of these parameters on the model moments of probabilities of future

good health, zero-utilization shares, and mean medical expenditures. First, from Figure 3(a),

we see that an increase in α (x, ε) lowers the baseline probability of future good health, and

so α (x, ε) are identified from the variation of the good health probabilities across sickness

sock ε and health status x. Second, both λ (x) and γ (x) impact the marginal benefits of

investment, but differentially. An increase in λ (x) compresses the effective health spending,

H − Hmin (x, ε), and drags down the concave portion of F (·). On the other hand, for

γ (x) < 1, an increase in γ (x) changes the curvature of the concave portion of F (·) by

rotating this portion counter-clockwise around the point (Hmin (x, ε) + λ (x) , 1− α (x, ε) /e).

Thus, λ (x) and γ (x) are identified from the variation in the mean medical expenditures

and probabilities of future good health across current health status. Lastly, an increase

in the minimum share, s (x) = Hmin (x, ε) /ε, directly impacts the share of workers who

choose zero utilizations. It also decreases the probabilities of future good health for large

sickness shocks, like ε3 and ε4, but has more limited effects on those of small sickness shocks.

On the preference side, ι (x, l) affects the marginal utility of consumption by health and

employment statuses impacting worker’s investment choices, e.g., an increase in ι (B, l = 0)

increases the zero shares for the uninsured. Overall, s (x) and ι (x, l) (particularly ι (B, 0))

are identified from the levels of the population shares of zero medical utilizations across

health and employment statuses.

Overall, while all 19 parameters contribute to the quantitative fit of the model, the more

parsimonious set of 7 parameters — γ (x) ,λ (x), s (x) and ι (B, 0) — govern the shape of

the health production function and utility function, and play important roles in both model

mechanisms and calibration results, which we detail in Subsections 5.3 and 6, respectively.
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4.3 Production Parameters and the China Shock

In the previous subsection, we described how we calibrate the parameters of the health

production function (19), and utility function (20), and solve the workers’ optimization

problem (9), given the predetermined household parameters in the top panel of Table 4.

These procedures are the inner loop of our computation. We now relate the inner loop to

the market clearing conditions of the manufacturing sector, equations (16)—(17), and clarify

how we introduce the China shock into our model. These steps, below, form the outer loop

of our computation.

First, as described in the bottom panel of Table 4, we take the values of the following

parameters from outside the model. We normalize the manufacturing sector productivity

ψm and the final goods price P to one. The sectoral home bias, ωm, is set to 0.5, and the

trade elasticity, σ − 1, to 3, following Simonovska and Waugh (2014).

Next, consider the pre-China-shock equilibrium. Equations (16)—(17) imply that

wmLm = πDmφmY +D∗mp
1−σ
m , πDm =

ωm (pm) 1−σ

ωm (pm) 1−σ + (1− ωm) (τ ∗mp
∗
m) 1−σ , (21)

where πDm is the domestic share of the manufacturing sector. Equation (21) is the labor

market clearing condition for the manufacturing sector. On its left-hand side, wm, the equi-

librium wage, has its value set in Table 4. The equilibrium labor supply, Lm, is completely

pinned down by the inner loop, from the workers’ optimal choices and the stationary dis-

tribution, as expressed in Equation (15). For example, if a large fraction of workers are in

good health, Lm tends to be high, because unhealthy workers have fewer effective labor units

than healthy ones (ν (x = B) = 0.81 in Table 4). Our remaining task, then, is to ensure

that the right-hand side of Equation (21) stays in balance.The first term on the right-hand

side represents domestic demand for manufacturing labor, and the second term represents

foreign demand, through exports. As listed in Table 4, φm is set to 0.17, the mean of man-

ufacturing value added as a share of U.S. GDP for 1990-1992 (WDI), and πDm = 0.85 is the

average for the years 1990-1992 (STAN). This means that we are left with two unknowns,

the export-demand shifter D∗m, and the total output in the economy Y , in equation (21).

We thus bring in the extra equation of the model-implied ratio of manufacturing export
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to Gross National Expenditure (GNE),

Manufacturing Export

GNE
=
D∗m · pm1−σ

Y
. (22)

From STAN, we obtain that this ratio is 0.057 (the average for 1990-1992). We then use

equations (21) and (22) to back out the values of D∗m and Y that are consistent with the

solutions from the inner loop.

We now move on to the post-China-shock equilibrium. We start by following the sufficient-

statistics approach in the trade literature, and model the China shock as an exogenous drop

in πDm to 0.71 (the average value for the post-China-shock years of 2010-2012). This approach

allows us to be agnostic about the specific sources of this shock, because the shock reduces

labor demand for the manufacturing sector by the same degree, whether it is caused by a

drop in p∗m (which may result from an increase in foreign productivity), a drop in import cost

τ ∗m, or combinations of these drops. On the other hand, because we have remained agnostic

about the non-manufacturing part of the economy, our model is unable to predict how the

China shock affects total output, Y .13 We expect such effects to be small, however, because

the trade literature estimates limited welfare gains from trade relative to autarky, a much

larger change than the China shock we model (e.g. Costinot and Rodriguez-Clare, 2014).14

Therefore, we make the assumption that there is no change in Y . We also assume that D∗m

remains unchanged.

Under these assumptions, there are two endogenously determined outcomes in Equation

(21), the wage rate wm and the total labor supply in the equilibrium Lm. We use two

approaches to simulate the effects of the China shock, keeping the parameter values for

the health production and worker utility functions at the pre-China-shock levels. In the

first approach, we assume that the job continuation rates remain unchanged. Equation (21)

allows us to solve for the post-China-shock equilibrium wage, wm, because the inner loop

pins down the aggregate labor supply, Lm, as a function of wm, via Equation (15), and that

pm = wm, by equation (8). In the second approach, we allow both wm and job continuation

rates to change. In order to contrast with the first approach, we set the wage decline to be

13An extension of our model to a multi-sector general equilibrium would allow us to endogenize the
aggregate output in equilibrium, but at the expense of more assumptions on the production side with
limited effects on workers facing the China shock, a focus of our work.

14This literature examines the change in real GDP, which is closely related to the total output, Y , or real
GNE.
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2.3%, the lower end of the estimates from Autor et al. (2014), and search for the change

in 1 − δ (E, x) that balances equation (21). For both approaches, we compare the model

predictions of the export-GNE ratios with data.

5 Calibration Results

In this section, we focus on our calibration results for the pre-China equilibrium. We report

parameter values and model fit in Subsection 5.1 and discuss how we validate our model in

Subsection 5.2. Then in Subsection 5.3, we clarify how our calibrated parameters help our

model match the key patterns of the data targets, Empirical Facts 1 and 2. Quantitative

assessment of the China shock is presented in Section 6.

5.1 Parameter Values and Model Fit

Table 7 reports the values of our calibrated parameters. In order to illustrate their intuition,

we plot the health production function, F (·), as implied by these parameters, by initial

health status and sickness shock, in Figure 4.

Table 7: Parameters Calibrated in the Model

Parameter Description Values

Health production

ε0 ε1 ε2 ε3 ε4
1− α (x, ε) Baseline probability Bad 0.265 0.212 0.161 0.106 0.096

Good 0.748 0.648 0.629 0.533 0.530

λ (x) Scale: Bad; Good 3.625; 1.173

γ (x) Concavity: Bad; Good 0.208; 0.802

s (x) Min. inv. share: Bad; Good 0.444; 0.782

Worker Utility

ι (x, l) Marginal utility: Bad; Good Emp. -0.000; 0 (norm.)

Unemp. -0.030; -2.689

First, the group of 10 baseline probability parameters, 1−α (x, ε), determine the vertical

intercept of the health production function, F (·). Since 1 − α (x, ε) increases with x and

decreases with ε, we see, from Figure 4, that F (·) shifts down as the sickness shock ε becomes

more severe or health status x becomes worse. In words, the probability of future good health

is higher when current health is good and lower when a severe sickness shock is realized.
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Figure 4: Calibrated Health Production
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Second, the remaining six parameters of the health production function determine its

shape. As can be seen from Figure 4, the shape of F (·) differs substantially across initial

health status. This happens for two reasons. One, the curvature of F (·) for H > Hmin is

much more concave for bad initial health, because γ (B) is smaller and λ (B) is larger than

their counterparts for good health. Two, s (B), the ratio of minimum health investment to ε

for bad health, is smaller than that for good health, s (G), and so the kink point of F (·) under

bad initial health is farther away from ε. The shape differences in F (·) imply that under

bad initial health, it is important to alleviate the sickness through medical expenditures,

whereas under good initial health, there is more scope for forgoing treatment (choose zero)

or doing over-investment.

Lastly, among the parameters of the utility function, ι (B, 0) is substantially smaller than

the ι (·, ·) values in the other states, which are close to 0, signifying low marginal utility of

consumption among the unemployed workers with bad initial health, consistent with Low

and Pistaferri (2015).

Table 8 shows that our model generates reasonable fits on thetarget moments reported in

Table 5. First, the model predicted population share of zero medical utilizations is the sum

of the probability of not being sick (i.e. experiencing ε0 = 0), and the share of endogenously

chosen zero treatment (H∗ = 0 < ε). For example, for the unemployed and uninsured workers

of bad initial health, ε0 happens 5% of the time (see Table 6) and the zero-treatment share is

14%, and so the model predicted share of zero medical utilizations is 19%, which is close to the

data target of 20%. On the other hand, the model predicted medical expenditure, min {H, ε},
is positive only if the individuals endogenously choose positive health investment (H∗ > 0),
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Table 8: Model Fit on Targeted Moments

Moments Model Data Moments Model Data

Share of individuals with zero medical utilizations

Bad, Emp, Ins 0.05 0.05 Bad, Emp, Unins 0.16 0.20

Bad, Unemp, Ins 0.05 0.06 Bad, Unemp, Unins 0.19 0.20

Good, Emp, Ins 0.08 0.08 Good, Emp, Unins 0.30 0.29

Good, Unemp, Ins 0.08 0.08 Good, Unemp, Unins 0.26 0.27

Average medical expenditures (conditional on positive)

Bad, Emp, Ins $3,689 $3,689 Bad, Emp, Unins $2,223 $2,412

Bad, Unemp, Ins $3,495 $3,493 Bad, Unemp, Unins $2,022 $2,148

Good, Emp, Ins $2,318 $2,318 Good, Emp, Unins $1,723 $1,625

Good, Unemp, Ins $2,318 $2,376 Good, Unemp, Unins $1,753 $1,591
Note: Model values are from Table 5, where we provide detailed descriptions on their construction procedures.

and excludes their over-investment above and beyond full treatment, max {H∗ − ε, 0}. For

example, for the unemployed and uninsured workers of bad initial health, the mean of model

predicted positive medical expenditure is $2,022, close to the data target of $2,148. Finally,

Figure 5: Model Fit on Good Health Probability
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Figure 5 plots the future good health probabilities by initial health status by insurance status

by sickness shock. We see that the model predictions (◦) track the data targets (×) fairly

well.

In summary, Table 8 and Figure 5 show that our model is successful in generating both

the qualitative and quantitative heterogeneity across worker groups in our data targets. We

now move on to compare our model predictions with untargeted data moments.15

15Given the workers’ choice of health investment and coinsurance rates, the actuarially fair health insur-
ance premium in the equilibrium is $2,260. This is close to the exogenously set premium of $2,820 (Table
6) from the MEPS data. In counterfactual analyses, we use transfers to ensure budget neutrality of the gov-
ernment, whose budget incorporates changes in the gap between the exogenous health insurance premium
and endogenously determined medical expenditures (Equation (18)).
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5.2 Validation of the Model

In this subsection, we externally validate our model by comparing the following worker-level

model predictions to their empirical counterparts: (i) more disaggregated (and so untargeted)

future good health probabilities; (ii) the income elasticity of health investment; (iii) the share

of workers who under-invest in health; and (iv) the ratio of non-medical consumption to

income. We focus on these untargeted moments because they are related to the quantitative

magnitudes of the health investment mechanism and its effectiveness in the calibrated model.

We provide additional validation by examining the model predicted aggregate effects of the

China shock in Section 6.

First, Figure 6 compares the model predicted future probabilities of good health with

data, where we use more disaggregated demographic groups — by initial health by employ-

ment by insurance statuses — than our target moments (see Figure 5). Figures 6(a) and (c)

are for the employed and uninsured workers with initially bad and good health respectively,

and Figures 6(b) and (d) are for the unemployed and insured workers. Figure 6 clearly shows

that our model predictions (circles) track these untargeted moments (crosses) well.

Figure 6: Good Health Probability by Employment/Insurance
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Second, we compare the model-predicted income elasticity of health investment with

the estimates from previous empirical studies. To do so, we use our model to simulate a

temporary increase in income and evaluate their effects on health investment. The average

elasticities in our model are 0.12 and 1.06, depending on whether we focus on medical

expenditures only or total health investment, in line with the range of estimates from previous

studies (e.g. Acemoglu et al., 2013) of 0.3 to 1.1.16

16Acemoglu et al. (2013) obtains the range of 0.3-1.1 for the income elasticity of hospital expenditure at the
U.S. Economic Subregion level, by instrumenting local income by global oil price and ESR-level importance
of oil in the economy. Other papers that estimate the elasticity are Moscone and Tosetti (2010),Baltagi and
Moscone (2010), and Baltagi et al. (2017) and their estimates vary between 0.35 and 0.9.
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Third, an important model prediction is that workers may endogenously choose to under-

invest in health. To measure the prevalence of under-investment in the data, we utilize

survey questions from the NHIS data in 2011-2012 that ask whether the respondent missed

or reduced medical care or medicine doses due to cost.17 If an individual’s answer to any

of these questions is “Yes”, our indicator variable for under-investment in health turns on

the value of 1. We obtain that, among the working-age adults (18-64) in the U.S., 18.6%

under-invest in health. In comparison, our model predicted share of under-investment is

16.7% for the pre-China equilibrium, close to the empirical share from the NHIS.

Fourth, the model also predicts that workers may endogenously choose to over-invest

in health, in the amount of max {H∗ − ε, 0}. From the data, it is difficult to disentan-

gle non-medical expenditures that help improve health (e.g., healthy foods) from ordinary

consumption expenditures. As a result, we compute the total non-medical consumption of

c+max {0, H∗ − ε} in the model, which would be measured as the total consumption expen-

ditures net of medical expenditures in the data. Using the recent surveys of the PSID (years

1999-2013) that include detailed consumption data, we show that among the employed, the

ratio of non-medical consumption to income is 70% for those with bad health and 60% for

those with good health,18 which are similar to our model predictions of 68% and 71%. In

other words, our model generates a reasonable non-medical consumption to income ratio,

even though this ratio is not directly targeted.

Overall, we are able to validate the model’s ability to generate health outcomes (transi-

tion probabilities) and health investment incentives, as measured by the elasticity and the

quantitative magnitudes of both under- and over-investment in health, that are in line with

the data.

17These questions are not available for earlier years, and we stop in 2012 because the Affordable Care Act
(ACA) went into effect in 2014. Examples of these questions include: “DURING THE PAST 12 MONTHS,
was there any time when {person} needed medical care, but did not get it because {person} couldn’t afford
it?”, and “DURING THE PAST 12 MONTHS, was there any time when you needed any of the following,
but didn’t get it because you couldn’t afford it? ... Prescription medicines.”

18As the PSID data records consumption at the household level, we use equivalent scale (0.7 for an
additional adult and 0.5 for an additional child) to adjust for family size. Our sample includes those who are
employed with positive labor income and we drop those with ratios in top and bottom 1% of the distribution.
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5.3 Key Model Features

Our main model mechanisms revolve around the optimal health investment, H∗, which, in

turn, consists of both medical expenditures, min {H∗, ε}, and over-investment, max {H∗ − ε, 0}.
While all model parameters and settings affect H∗, the shape of the health production func-

tion, the health insurance structure, and the utility cost of the state of unemployment and

bad health play important roles.19

For expositional purpose, we discuss in detail the decisions of employed workers, after

which we summarize how unemployed workers’ decisions differ. Figure 7 illustrates the

averages of medical expenditures and total health investment of employed workers by health

status, insurance status, and sickness shocks, where the averages are taken across other states

of workers (i.e., the labor productivity shock, z, and financial asset, a). The figure also shows

the values of the sickness shock ε (that differ only by health status), as the benchmark for

comparison, and the unit of the vertical axis is $10K.

Over/Under-Investment and Insurance Status Figure 7(c) plots the choices of em-

ployed and insured workers with good initial health, by sickness shock (x-axis). A noticeable

pattern among these workers is that total health investment exceeds sickness shocks (H∗ > ε)

for all sickness shocks. That is, the most resource-rich types in our economy opt to mitigate

against future risks of falling into bad health by over-investing in health, beyond fully treat-

ing their sickness. This is an important aspect of our model: in addition to self-insurance

through savings, we incorporate an additional self-insurance channel through health invest-

ment choices. Such a mechanism cannot be captured in models with exogenous health

dynamics or models that equate the amount of health investment with observed medical

expenditures.

Figures 7 (a), (b) and (d) show that over-investment is also common among workers

who do not experience a sickness shock (ε0) or experience a mild sickness shock (ε1 and ε2),

including the workers with no health insurance. This happens for two reasons. One, the

insurance premium is the same for all sickness shocks, and so the (ex-post) financial benefit

of health insurance coverage is limited for the workers with mild sickness. Two, these workers

are faced with the future risks of severe sickness, and so they self-insure by over-investing in

19For example, the baseline probability parameters, 1 − α (x, ε), shift the health production function
vertically (Figure 4) and contribute to the quantitative model fit with the probability of future good health.
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Figure 7: Health Investment of Employed Workers
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health.

On the other hand, Figures 7 shows that for the uninsured workers of bad initial health,

total investment is lower than the sickness shock (H∗ < ε) in the cases of severe sickness,

ε3 and ε4. Under-investment happens due to the combination of resource constraints and

consumption smoothing. In terms of resources, health insurance coverage carries large (ex-

post) financial benefits for severe sickness, especially given the low coinsurance rates in our

model (Table 6). Lacking such resources, uninsured workers with bad initial health choose

to under-invest in health for the sake of current-period consumption.

Overall, the health insurance structure and endogenous and flexible investment choices

help our model match the heterogeneity in the targeted moments across insurance status, as

summarized in Empirical Fact 2.20

20Note that the baseline probabilities in Table 7 are substantially lower than the transition probabilities
in Figure 5.
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Heterogeneity Across Initial Health Status Figure 7 also shows substantial hetero-

geneity in optimal health investment by initial health status that arise due the their different

shapes of health production function, F (.) (Figure 4).

First, above the minimum investment, Hmin (x), F (·) is more concave for bad health

individuals; i.e. the marginal benefit of health investment is high initially but decreases

rapidly as H increases. Thus, bad health individuals who choose partial treatment still

expend a significant amount of medical expenditures, consistent with their high mean medical

expenditures conditional on positive expenditures, documented in Table 8. This also implies

that among the insured, the amount of over-investment tends to be small for bad health

individuals (Figures 7(a) and 7(c)). For example, while the amount of over-investment is

almost as large as ε4 (G) for ε4 (G) = $6, 290, it is fairly small even for ε2 (B) = $1, 490, and

it drops to zero for ε4 (B) = $9, 320.

Second, F (.) has a short flat segment relative to ε for the workers with bad initial health

(because s (B) = Hmin (B) /ε (B) is small), and so they are more likely to choose partial

treatment (0 < H∗ < ε) than zero treatment (H∗ = 0). In comparison, the workers with

good initial health do not choose partial treatment when they experience a sickness shock.

Such compositional differences interact with the differences in the concavity of F (·), and

the total effects of these interactions are manifested in Figures 7(b) and 7(d). For the

good initial health individuals with no insurance (Figure 7(d)), 22% choose zero treatment

(but not partial treatment) and the remaining 78% choose over-investment. The amount of

over-investment is substantial given the low concavity of F (·). Therefore, the average total

investment is substantially higher than the average medical expenditure. In comparison, only

10.7% of bad health individuals without insurance choose zero treatment. The remaining

41.0% choose partial treatment and 48.3% choose over-investment. Due to the high concavity

of F (·), medical spending is high under partial treatment but the amount of over-investment

is small. Therefore, the average total investment is similar to the average medical expenditure

(Figure 7(b)).

Together, these features of the health production function help the model match the

heterogeneity in the targeted moments across health status, as summarized in Empirical

Fact 1.
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Unemployed Workers For the unemployed workers, under-investment and over-investment

continue to work in the ways discussed above, and they also work through the utility channel.

Due to the high utility cost of the state of bad health and unemployment (ι (B, l = 0) < 0),

the unemployed workers with good health are strongly incentivized to over-invest, and this

effect amplifies the effect through the low concavity of the health production function, dis-

cussed above. In addition, the unemployed workers with bad health are also incentivized

to invest in health, in order to transition out of this state, and this effect amplifies the low

marginal utility of consumption in this state. Therefore, our model predicts small differences

in both population shares of zero medical utilizations and mean medical expenditures across

employment status, as consistent with the data targets shown in Table 8.

In summary, over-investment and under-investment, illustrated in Figure 7 and discussed

above, underlie the model predicted outcomes that we described in Subsections 5.1 and 5.2.

They also play an important role in the way in which exposure to the China shock may

impact the workers’ probability of good health.

6 Quantitative Analysis

In the previous section, we have shown that the calibrated model matches the key quanti-

tative patterns of the data, and clarified the key model features in the pre-China economy.

Now, we use the model as a laboratory to quantify the effects of the China shock on work-

ers’ probability of being in good health, and to evaluate the effectiveness of potential policy

responses.

6.1 China Shock and Health

In this subsection, we present the model’s predictions about the effects of the China shock

on aggregate manufacturing sector outcomes, health transition probabilities at the worker

level, and sector-wide health distribution to quantify the economic significance of our results.

Manufacturing Sector Outcomes in the Post-China Economy To recap our earlier

discussions, we model the China shock as an exogenous drop in the domestic share of the

manufacturing sector from 0.85 to 0.71. Table 9 summarizes the model-implied effects of

the China shock. In the first experiment in which only wage adjusts and the job-destruction
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Table 9: Manufacturing Sector Outcomes in the Post-China Economy

Income Employment Export-GNE

Pre-China economy $50,211 71.8% 0.057

Post-China 1: Wage adjustments $47,322 71.5% 0.068

Change from Pre-China -5.75% -0.3pp +19.30%

Post-China 2: Wage & employment adjustments $49,056 68.4% 0.061

Change from Pre-China -2.30% -3.4pp +7.02%

rate remains fixed, we observe that the model predicts a 5.75% drop in the wage rate of

manufacturing workers. Intuitively, this is because the increase in import competition from

the China shock reduces demand for manufacturing labor, as can be seen from Equation (21).

The magnitude of the wage decline is in line with the upper end of the estimates from Autor

et al. (2014), 7.2%. We also see that the export-GNE ratio for the U.S. manufacturing sector

increases from 0.057 to 0.068. as the lower manufacturing wage reduces the production cost

of the domestic input. The value of the post-China export-GNE ratio is comparable to the

mean value for the years of 2010-2012 in the data, 0.077.

In the second experiment, we fix the wage drop at 2.3% (the lower end of the estimates

from Autor et al., 2014), and attain the labor market equilibrium condition (21) by a uniform

increase in the job destruction rate δ (E, x) of 1.12pp, resulting in a 3.4pp drop in the manu-

facturing sector employment rate. This implies that the ratio of manufacturing employment

to population declines by 0.51pp (assuming that the manufacturing sector accounts for 15%

of the population), accounting for a substantial portion of the effect of the China shock on

this ratio, 0.88pp, as reported by Autor et al. (2013).

Overall, our model’s predicted effects of the China shock on manufacturing sector out-

comes are quantitatively consistent with previous findings, further validating our model.

Effects on Workers’ Health Statuses Table 10 gathers the change in the probability

of transitioning to good health in the post-China economy by workers of different charac-

teristics. Before we compare these model predictions with our estimates from Table 3, we

clarify that in our stylized model, economic shocks affect health status through workers’

optimal choices of monetary health investment, but other channels (e.g., mental stress) have

been assumed away. As a result, the comparisons below show the contribution of the single

mechanism of optimal health investment.

First, among the employed, the probability of being in good health decreases by 2.15%,
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Table 10: Heterogeneity in Health Effects of the China Shock

% Change in Transition to Good Health (from Pre-China)

By Initial Health and Employment Statuses

Health Status All Unemployed Employed

All -2.23 -2.33 -2.15

Bad -0.78 -1.32 -0.49

Good -1.36 -1.20 -1.41

By Sickness Shock and Insurance Statuses

Sickness Shock All Uninsured Insured

All -2.23 -2.72 -2.07

ε0 (no shock) -1.36 -1.39 -1.35

ε1 -1.91 -1.94 -1.90

ε2 -2.10 -2.24 -2.04

ε3 -2.81 -4.22 -2.34

ε4 (severe shock) -2.44 -3.17 -2.22

which translates into good-health elasticity of IPW for the employed of -0.023.21 In our

empirical analysis in Section 2, where we estimate the elasticity among initially employed

workers, we find the elasticity of -0.054 (Table 3) and -0.06 (Table 2) using individual-

level and region-level data, respectively. This implies that the optimal-health-investment

mechanism is quantitatively important, accounting for roughly two-fifths of our empirical

estimate. Next, for employed workers with good initial health, transition probability to future

good health drops by 1.36% (elasticity -0.0149), suggesting that the investment mechanism

accounts for more than one-fifth of the estimated elasticity of -0.068 (Table 3). For the

employed with initial bad health, the model predicted elasticity is -0.0052, very close to

0, consistent with the finding from Table 3 where the coefficient estimate for this group is

statistically insignificant. These results are mainly driven by the drop in over-investment in

health, because most employed workers have health insurance.

Table 10 also shows the model predicted effects by sickness shock and insurance status.

As discussed in Subsection 5.3, the health effects of having insurance are significantly larger

for severe sickness in our model. As a result, Table 10 shows that the insured and uninsured

experience very similar health effects from the China shock when they face mild sickness

shocks of ε0 through ε2, ranging between 1.3% and 1.9%, but the uninsured have much

21The percent change in IPW is equal to
((

1− πD
m,pre

)
−
(
1− πD

m,post

))
/
(
1− πD

m,pre

)
=

((1− 0.71)− (1− 0.85)) / (1− 0.85) ≈ 0.93 (93%). And thus, the elasticity with respect to IPW can
be obtained by dividing 93 to the percent change in good health share.
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larger effects (in magnitude) for the severe sickness of ε3 and ε4. Among uninsured workers

experiencing ε3 shocks, the probability of transitioning to good health decreases by 4.22%,

almost twice as large in magnitude as the 2.34% drop among insured workers. Interestingly,

the health effects among the uninsured with the most severe shock, ε4, are smaller than

those with ε3. Intuitively, this is the under-investment mechanism at work. Under ε4, a

larger share of workers choose zero treatment in the pre-China economy than under ε3, and

so these workers’ transition probability to good health cannot decrease further.

In summary, Table 10 shows rich and non-linear heterogeneity in the health effects of

the China shock across worker characteristics. We now move on to the aggregate effects

of the China shock on health status, in order to highlight the economic significance of our

simulation results.

Aggregate Health Effects We first clarify that the aggregate health effects for the man-

ufacturing sector are not the weighted averages of the group-specific effects in Table 10,

because of compositional changes. Specifically, the change in population share of good

health can be decomposed to the sum of
∑

s ∆Pr (G; s)× µ (s), the effect from changes in

probability transitions, and
∑

s ∆µ (s)×Pr (G; s), the effect from changes in the stationary

distribution. Thus, the aggregate change in the population share in good health encompasses

both the intensive-margin effect from the group-specific elasticities, ∆Pr (G; s), as well as

the extensive-margin effect from compositional changes, ∆µ (s).

In the aggregate, the model predicted change in good health share in the manufacturing

sector is -2.15%, and the aggregate health investment H drops 7.2%. The drop in H, in

turn, is driven by the 12% decline in over-investment. Over-investment declines substantially

regardless of initial health status or insurance status, because the health production function

is relatively flat at the level of optimal over-investment, and because over-investment is not

covered by health insurance. The other component of H, medical expenditure, however, is

almost unchanged (-0.6%), despite the substantial decline in the good-health share, because

sickness shocks are more severe for those with bad health and so tend to require higher

medical expenditures.

In our simulation, the equilibrium wage is endogenously determined in the post-China

economy, through the manufacturing-sector labor-market clearing condition (21). This im-

plies that the decrease in the aggregate good-health share reduces the aggregate labor supply
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to the manufacturing sector, and so cushions the downward pressure of the China shock on

the equilibrium wage.

Overall, the 2.15% decline in good health share implies that in the post-China economy,

the share of workers with good health decreases from 54.25% to 53.03%. This translates into

nearly half a million, or 460,000 individuals, being pushed into bad health, assuming that

the manufacturing sector accounts for 15% of the average U.S. population of 251.6 million in

1990-1992. According to MEPS, individuals with bad health have more frequent visits to the

emergency room (ER) relative to their good health counterparts—0.44 and 0.21 per person

per year, respectively—and also longer hospital stays—0.67 and 0.26 inpatient days per

person per year, respectively. As a result, our model predicts that, in response to the China

shock, the U.S. manufacturing workers make 103,000 more ER visits and spend 189,000 more

inpatient days in hospitals per year. These examples further illustrate the above-mentioned

model prediction that following the China shock, the overall health is substantially worse

but total medical expenditure remains almost unchanged.

6.2 Counterfactuals: Universal Health Insurance

In the previous subsection, we have quantified the substantial adverse effects of the China

shock on health status. We now explore the efficacy of potential policy responses to the

China shock by conducting counterfactuals. Specifically, we simulate a post-China economy

in which all individuals are covered by health insurance with the premium and coinsurance

rates specified in Table 6.

6.2.1 The Overall Effect for the Manufacturing Sector

We first simulate the manufacturing sector. As in the post-China economy simulation of the

previous subsection, we fix Y and D∗m to the pre-China economy, while allowing the wage rate

to adjust to clear the labor market. We impose budget-neutrality, that is, all individuals

are subject to lump-tum transfers so that the government’s exogenous expenditures G in

Equation (18) in the counterfactual economies are equivalent to those in the benchmark

post-China economy.

Table 11 summarizes our key results. In the post-China economy with universal in-

surance, the wage drops by 6%, similar in magnitude to the 5.8% drop in the benchmark
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Table 11: Effects in Post-China Economies under Benchmark and Universal Insurance

Change from Pre-China Economy

Pre-China Post-China with Post-China with

Economy Benchmark Insurance Universal Insurance

Wage $50,211 -5.8% -6.0%

Health investment, H $5,666 -7.2% -1.4%

Medical expenditure, min {H, ε} $2,400 -0.6% 13.7%

Over-investment, max {H − ε, 0} $3,267 -12.0% -12.5%

Partial treatment (H < ε) share 12.1% +0.9pp -0.9pp

Zero treatment (H = 0) share 4.6% +0.9pp -4.6pp

Good health share 54.3% -1.2pp -0.2pp

post-China economy. The small difference arises because other things equal, an improvement

in overall health increases aggregate labor supply and so reduces the equilibrium wage.

The similar wage decline implies a similar decline in over-investment under universal

health insurance (12.5%), as compared with the benchmark post-China economy (12%).

Medical expenditure, however, increases by 13.7% under universal health insurance, in con-

trast to its 0.6% decline in the benchmark. As a result, despite the similar wage effects, the

drop in health investment, H, is much smaller in magnitude with universal health insurance

(1.4%) than with the benchmark (7.2%).

In order to explore the mechanisms through which universal health insurance increases

medical expenditure, we examine the share of individuals who choose partial treatment and

zero treatment. While universal health insurance reduces the share of partial treatment,

the effect is relatively small, because even insured individuals may optimally choose partial

treatment if they have limited resources. In contrast, universal health insurance completely

eliminates zero treatment. The resulting increase in medical expenditure is substantial be-

cause of the minimum investment, Hmin.

Overall, in the presence of universal insurance, the population share of good health would

only drop by 0.2pp relative to the pre-China economy. In comparison, this share drops by

1.2pp in the benchmark post-China economy. In other words, if universal health insurance

had been implemented after the China shock, it would have remedied 83.3% of the adverse

health effects of the China shock. This remedy happens primarily because under universal

health insurance, everybody would invest at least the minimum amount for health when he

is sick. On the other hand, our results also show that universal health insurance would not

be 100% effective, because health insurance provides no protection against the decline in

45



over-investment. We now further clarify this point by examining the heterogeneous effects

of the counterfactual universal health insurance across commuting zones.

6.2.2 Heterogeneity Across Commuting Zones

In order to simulate heterogeneous effects across commuting zones, we first multiply the

percentiles of the distribution of ∆IPW (e.g. $4,500 per worker, or 4.5 units, at the 75th

percentile) by Autor et al. (2013)’s coefficient estimate,22 to obtain the percentiles of the

distribution of empirically estimated wage changes (e.g. 9.7% at the 75th percentile). We

list these percentiles and wage changes in the first two columns of Table 12.

We then interpret each percentile as a single commuting zone, and simulate the effect of

the China shock by feeding in the wage drops exogenously, without solving for the equilibrium

wage using Equation (21). We report the results of these simulations in the third column

of Table 12. We then perform the same counterfactual universal health insurance as in

Subsection 6.2, imposing budget-neutrality within each commuting zone. We present the

results of these counterfactuals in the last column of Table 12.

Table 12: Health Effects by IPW Exposure

% of Population with Good Health

(pp change from Pre-China)

∆IPW Percentile Wage Drop (%) Benchmark Insurance Universal Insurance

5th 0.2 54.2 (-0.05) 55.2 (+0.97)

10th 0.4 54.1 (-0.10) 55.1 (+0.91)

25th 2.0 53.8 (-0.40) 54.8 (+0.62)

50th 5.5 53.1 (-1.11) 54.2 (-0.04)

Mean (53rd) 7.3 52.7 (-1.48) 53.8 (-0.40)

75th 9.7 52.2 (-1.97) 53.4 (-0.85)

90th 15.8 50.9 (-3.28) 52.2 (-2.02)

95th 21.7 49.7 (-4.51) 51.0 (-3.18)

From Table 12, we see that, as expected, the commuting zones with large drops in wages

experience large deterioration of health. For example, although the median commuting zone

experiences a drop of 1.11pp in the population share of good health, the 95th percentile

commuting zone has the sharp decline of 4.5pp, more than 8%.

We also see that while universal insurance helps mitigate these negative health effects, the

efficacy of the mitigation varies substantially across commuting zones. For a commuting zone

22We use the estimate in Table 9 of Autor et al. (2013), 2.14% per unit of ∆IPW.
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with a small wage decline (e.g. those below the 25th percentile), universal health insurance

delivers higher population shares with good health than the pre-China economy, more than

fully reversing the adverse health effect of the China shock. In contrast, for the commuting

zone at the 95th percentile, even with universal health insurance, the good health share would

still drop by 3.18pp relative to the pre-China economy. This means that universal health

insurance would only remedy around 30% ((4.51-3.18)/4.51) of the health deterioration from

the China shock.

The intuition of these results is similar to that for Table 11. Relative to the bench-

mark post-China economy, universal health insurance has little effect on the change in over-

investment, but increases medical expenditure substantially. When wage decline is small, so

is the drop in over-investment, and so the increase in medical expenditure dominates. With

large wage declines, however, the drop in over-investment dominates, and so the overall

efficacy of universal health insurance would be limited.

Figure 8: Health Effects by IPW Exposure and Sickness Shocks

(a) Moderate Sickness Shocks
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(b) Severe Sickness Shocks
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In Figure 8, we further disaggregate the efficacy of universal health insurance by sickness

shock. Specifically, Figure 8(a) plots the change in the transition probability to good health

relative to the pre-China economy under benchmark insurance and under universal insurance

by percentiles of ∆IPW among those with the moderate sickness shock of ε2. Meanwhile,

Figure 8(b) plots those for the severe sickness shock of ε4.
23

We first see, from Figure 8(a), that among those mildly sick, the efficacy of universal

health insurance would be small across the ∆IPW distribution, as the change in the transition

probability to good health, from pre-China to universal insurance, is similar to that from

23The graphs for ε0 and ε1 are similar to Figure 8 (a), and the graph for ε3 is similar to Figure 8(b).
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pre-China to the benchmark. However, as sickness becomes more severe, the gap between

the two bars becomes much larger, as shown in Figure 8(b). For the commuting zone at the

5th percentile, universal health insurance would increase the transition probability to good

health by 2.76pp, much higher than the 0.41pp increase experienced by those with ε2, shown

in Figure 8(a). Even for the commuting zone at the 75th percentile, experiencing a 9.7% wage

drop, universal health insurance would still increase the transition probability to good health

relative to the pre-China economy, more than fully offsetting the deterioration in health from

the China shock. Overall, Figure 8(b) shows that for the severely sick individuals, universal

health insurance would be very effective in mitigating the adverse health effects of the China

shock.

7 Conclusion

In this paper, we study how the China shock affects workers’ health through the mechanism

of optimal health investment. We use micro-level panel data to show that exposure to the

China shock reduces workers’ probability of being in good health, with the elasticity of

around -0.05. We then calibrate a quantitative model of health transition dynamics with

a flexible health production function, where workers may optimally choose to under-invest

or over-invest in health relative to the sickness shock. The model replicates key empirical

moments in the micro data of health, including the shares of zero medical utilizations that

have been overlooked in the previous literature. Our simulation shows that the health effects

of the China shock have rich and non-linear heterogeneity across worker characteristics, and

that the mechanism of optimal health investment is quantitatively important, capturing

40% of our empirical elasticity estimates, and economically significant, pushing nearly half

a million manufacturing workers into bad health.

In our counterfactuals, we find that universal health insurance, implemented after the

China shock, would remedy over 80% of the overall adverse health effects, primarily through

the substantial reduction in the under-investment of health. However, since health insurance

does not cover over-investment in health, the efficacy of universal health insurance would be

fairly limited for the commuting zones with large exposure to the China shock, with the silver

lining that it would still be highly effective for the individuals with the most severe sickness.

Our results speak to the recent discussions about whether some form of universal health
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insurance would be beneficial for the U.S. (e.g., Baicker et al., 2023; Einav and Finkelstein,

2023).

While our model accommodates rich heterogeneity across initial health, employment,

insurance, and sickness, it abstracts from the life-cycle effects of the China shock. It may

be an interesting avenue for future research to explore whether the age at which a worker is

exposed to the China shock may impact his employment and health investment decisions. In

addition, although we focus on the China shock in this study, our model framework is general,

and so could be applicable to answer other questions. For example, it may be interesting

to explore whether under-investment and over-investment in health may contribute to the

evolution of health inequalities and earnings, complementing recent works by Hosseini et al.

(2021) and De Nardi et al. (2023).
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